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Preface

This is the eighth issue of a series of Technical Notes entitled

OPTICAL RADIATION MEASUREMENTS. The series will consist primarily of

reports of progress in, or details of, research conducted in radiometry

and photometry in the Optical Radiation Section of the Heat Division.

The level of presentation in OPTICAL RADIATION MEASUREMENTS will be

directed at a general technical audience. The equivalent of an under-

graduate degree in engineering or physics, plus familiarity with the

basic concepts of radiometry and photometry [e.g. , G. Bauer, Measurement

of Optical Radiations (Focal Press, London, New York, 1965)], should be

sufficient for understanding the vast majority of material in this

series. Occasionally a more specialized background will be required.

Even in such instances,- however, a careful reading of the assumptions,

approximations, and final conclusions should permit the non-specialist

to understand the gist of the argument if not the details.

At times, certain commercial materials and equipment will be identi-

fied in this series in order to adequately specify the experimental

procedure. In no case does such identification imply recommendation or

endorsement by the National Bureau of Standards, nor does it imply that

the material or equipment identified is necessarily the best available

for the purpose.

Any suggestions readers may have to improve the utility of this

series are welcome.

Henry J. Kostkowski, Chief
Optical Radiation Section
National Bureau of Standards
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Tables of Diffraction Losses*

W. B. Fussell

Tables of diffraction losses are given for

a range of typical experimental geometries for
wavelengths from 0.2 to 100 micrometers. The

scaling relationships for the diffraction losses
for varying wavelengths and geometries are also
given, and sample calculations are presented.
General formulas are given for the diffraction
losses; the formulas are derived from the
Kirchhoff scalar paraxial diffraction theory.

The accuracy of the tabulated values is estimated.

Key words: Diffraction; diffraction losses; Fresnel
diffraction; Kirchhoff diffraction theory; photo-
metry; radiometry; scalar diffraction theory.

1. Introduction

With the improved precision and accuracy of radiometric measure-
ments, diffraction losses have become significant. It is useful, there-
fore, to compute and tabulate diffraction losses for a range of typical
geometries and wavelengths. The Kirchhoff scalar paraxial diffraction
theory is used to calculate these losses. This is an approximate model
which evaluates the phase relationships over the diffracting aperture
(see fig. 1) for each elemental source area, for a given detection point
and wavelength; the resulting complex number is then integrated over the
source area and the magnitude of the sum indicates the relative spectral
irradiance at the given detection point, compared with other detection
points on the detector area. The model assumes: a., all source points
radiate independently (that is, incoherent radiation); b., there are no
polarization effects (that is, no vector effects); c. , off-axis angles
are small, and hence obliquity effects can be neglected. (Section 6 out-
lines the derivation of the equations used to compute the tables.)

The mathematical formulas used to compute the diffraction losses are
refinements of the basic Fraunhofer on-axis diffraction formula (see
Blevin[l] l

) . The tabulated on-axis diffraction losses are estimated to
be accurate to within 10% mathematically; the off-axis diffraction losses
are estimated to be accurate to within 20%. (If the physical realities
of an experiment differ from the assumptions of the Kirchhoff model,
there will be additional errors besides those due tc the mathematical
approximations used to compute the tables; however, it is expected that

*Supported in part by the Calibration Coordination Group of the Depart-
ment of Defense.

'•Figures in brackets indicate the literature references at the end of
this paper.



most situations in radiometry and photometry will be within the regime
of the Kirchhoff model. Blevin [1], for example, finds excellent
experimental agreement with the Kirchhoff model.) Thus, if it is

desired to calculate the off-axis diffraction loss for a given experiment
to within 0.1% of the spectral irradiance at the detector, then the
geometry of the experiment should be such that the tabulated diffraction
loss is less then 0.5% of the spectral irradiance at the detector, since
an error of 20% of 0.5% is equal to 0.1%.

The geometries and wavelengths selected for the diffraction loss
tables are:

a., wavelengths from 0.2 to 100 micrometers;

b.

,

source (or detector) diameters from 0.5 to 5 cm;

c.

,

source (or detector) -to- aperture distances from 5 to 20 cm;

d.

,

aperture diameters from 0.005 to 0.5 cm.

The geometry and terminology used in the diffraction loss tables is shown
in figure 1.

In general, if the circumference of the circle produced by projec-
ting the aperture from every point on the detector (the geometry in this
report is assumed to be circularly symmetric in all cases) , onto the
plane of the source, lies within the source, then the radiation incident
on the detector is proportional to the source radiance (less diffraction
losses) . On the other hand, if the circumference of the circle produced
by projecting the aperture from every point of the source, onto the plane
of the detector, lies within the detector, then the radiation incident on
the detector is the total source radiation through the aperture (less

diffraction losses) . (The diffraction losses for a given configuration
are identical, whether the source is treated as a detector and the detec-
tor as a source, or vice versa; this is sometimes a conceptual advantage
in that it transforms a source radiance measurement into a total aperture
radiation measurement. ) In this report, the source radiance geometry
will always be meant unless it is explicitly stated that the total
aperture radiation geometry is under consideration.

For a given geometry, the diffraction loss in the plane of the detec-
tor is least on the axis; the diffraction loss increases steadily as the
distance from the axis increases (see sec. 6). Therefore, the diffrac-
tion loss realized with a circular detector increases steadily as the
detector radius increases. The diffraction losses listed in the follow-
ing tables are for the on-axis case (the "point" detector) , and also for
the case of a detector that sees 90% of the diameter of the source (the

radius of such a detector is designated x ). These diffraction losses,— TTlcLX
designated E". and E'

r
respectively, bracKet the loss for detector

radii between zero and x to within roughly ±20% for geometries where
the aperture diameter is much less than the source diameter, and more
accurately for ratios of the aperture diameter to the source diameter

2



larger than 0.1 (see the end of sec. 7).

2. Tables of Diffraction Losses as Functions
of Wavelength and Geometry

Terminology

:

X is the wavelength in micrometers.

d is the source diameter in cm (or the detector diameter, for

a total aperture radiation measurement; see sec. 1)

.

b is the source-aperture distance in cm.

D is the aperture diameter in cm.

v is the dimensionless quantity 7rDd(2bX)~.

E 1

. is the diffraction loss 1 for a point detector on-axis

whose distance from the aperture is at least 10 times

the source- aperture distance.

E 1 is the diffraction loss averaged over the area of a

circular detector of radius x (see sec. 1 and fig. 1)

;

max
the radius x is defined to oe that radius for which

max
the field of view through the aperture covers the por-
tion of the source disc whose ^diameter is 0.9 the source
diameter; the distance of the detector from the aperture
must be at least 10 times the source- aperture distance.

1 The diffraction losses E*. and E' are given as a percentage of the

irradiance that would be present at the detector in the absence of
diffraction. The mathematical formulas used to compute E 1

. and E'
, • ^ ^iJiin , -max

are given in section 6. Upper bounds for the errors in E . and E T

can be computed using the dimensionless quantity v, and formulas for
such computations are given in section 7.



X = 0^2 (urn)

d =
0^5. (cm)

b D = .005 -01 .02 .05 .1 .2 .5

(cm) (cm)

v 39.3 78.5 157 393 785 1570 3930

($)E' . 1.62 0.8l 0.41 0.16 0.08 .05
_ min

($)E f 2.59 1.27 0.62 0.24 0.12 .06
max

v 19.6 39.3 78.5 196 393 785 I960

10 E' . 3. 24 1.62 0.81 0.33 0.17 0.10
_ man
E' 5.19 2.55 1.2U 0.47 0.23 0.13
max

v 9.82 19.6 39-3 98.2 196 393 982
20 E' . 6. 49 3.24 1.62 0.66 0.34 0.19mm

E« ^8* 5.09 2.48 0.95 0.47 0.25
max

d = 1 (cm)

(cm;

v 78.5 157 314 785 1570 3140 7850

5 (#)E f

. 0.81 0.41 0.20 0.08 0.04 0.02 0.01
_ mm

($)E T 1.31 0.65 0.32 0.12 0.06 0.03 0.01
max

v 39.3 78.5 157 393 785 1570 3930
10 E' . 1.62 0.81 O.Ul 0.16 0.08 0.04 0.02

_ mm
E' 2.62 1.30 0.64 0.25 0.12 0.06 0.03
max

v 19.6 39.3 78.5 196 393 785 I960
20 E" . 3.24 1.62 0.81 0.33 0.16 0.06 0.04

_ mm
E 1 5-24 2.59 1.27 0.49 0.24 0.12 0.06
max

(Note: These values are upper bounds.)



X = 0^2_ (ym)

d = 2 (cm)

b D= .005 .01 .02 .05 .1 .2 .5

(cm) (cm)

v 157 3lM 628 1570 31^0 6280 15700

5 (%)E f

. O.il 0.20 0.10 O.OU 0.02 0.01 0.00
_ mm

{%)E 1 0.66 0.33 0.16 0.06 0.03 0.01 0.01
max

v 78.5 157 31 ^ 785 1570 31^0 7850
10 E' „ 0.8l O.il 0.20 0.08 0.0U 0.02 0.01

_ min
E T 1.32 0.66 0.32 0.13 0.06 0.03 0.01
max

v 39.3 78.5 157 393 785 1570 3930
20 E' . 1.62 0.8l O.Ul 0.16 0.08 0.0^+ 0.02mm

E' 2.64 1.31 O.65 0.25 0.12 0.06 0.02
max

d = 5 ( cm)

b
(cm)

V 393 785 1570 3930 7850 15700 39300

5 mm 0.16 0.08 0.0U 0.02 0.01 0.00 0.00

max
0.26 0.13 0.07 0.03 0.01 0.01 0.00

V 196 393 785 i960 3930 7850 19600
10 E' .mm 0.32 0.16 0.08 0.03 0.02 0.01 0.00

E'
max

0.53 0.26 0.13 0.05 0.03 0.01 0.00

V 98.2 196 393 982 I960 3930 9820
20 E' .mm 0.65 0.32 0.16 0.06 0.03 0.02 0.01

E' 1.06 0.53 0.26 0.10 0.05 0.02 0.01
max



d = 0.5 (cm)

b
(cm)

D =

(cm)

v

U)E'

(%)E'

mm
max

005

15.7
U.05

6.48

01

31.4

2.03

3.18

.02

62.8
1.01

1.55

05

157
0.41

0.59

.2 .5

3l4 628 1570
0.21 0.12

0.29 0.16

10

20

V 7.85 15-7 31.4 78.5 157 314

E' ._ mm 8.11 4.05 2.03 0.82 0.42 0.24

E 1

max
^0* 6.37 3.10 1.19 0.59 0.32

V 3.93 7.85 15.7 39.3 78.5 157
E' .

— 8.11 4.06 1.64 0.84 0.48mm
i

max
<20* 6.19 2.37 1.17 0.64

785

393

d = 1 (cm)

b
(cm)

V 31.4 62.8 126 314 628 1260 3140

5 U)E» .mm 2.03 1.01 0.51 0.20 0.10 0.05 0.03

(^)E'
max

3.28 1.62 0.80 0.31 0.15 0.07 0.03

V 15.7 31.4 62.8 157 314 628 1570
10 E' ._ mm 4.05 2.03 1.01 0.4l 0.20 0.11 0.05

E'
max 6.55 3.24 1.59 0.6l 0.30 0.15 0.07

V 7.85 15-7 31.4 78.5 157 314 785
20 E' ._ mm 8.11 4.05 2.03 0.8l 0.4l 0.21 0.11

E 1

max
<20* 6.48 3.18 1.23 0.59 0.29 o.i4

'(Note: These values are upper bounds.)



\ = 0^5 (ym)

d = 2 (cm)

b
(cm)

10

20

D =

(cm)

v
(^)E'

(%)E»

min

max

v
E'

E'

min

max

v
E'

E'

min
i

max

,005

62.8
1.01

1.65

31. 4

2.03

3.30

15-7
4.05

6.59

.01

126
0.51

0.82

62.8
1.01

1.64

31. 4

2.03

3.28

,02

251
0.25

0.1+1

126
0.51

0.81

62.8
1.01

1.62

.05

628
0.10

0.16

3l4
0.20

0.32

157
o.ia

0.63

.1 .2

1260
0.05

0.08 o.o4

628
0.10

0.15

314
0.20

2510
0.03

1260
0.05

628
0.10

.5

6280
0.01

0.01

3l40
0.02

0.07 0.03

1570
0.04

0.31 0.15 0.06

b
(cm)

d = 5 ( cm)

(*)E«

(*)E

min
i

max

157
0.1+1

0.66

311+

0.20

0.33

628
0.10

0.16

1570
0.04

0.06

31 1+0

0.02

0.03

6280

0.01
15700
0.00

0.02 0.01

10

V 78.5 157 314 785 1570 3140 7850
E' . 0.81 0.1+1 0.20 0.08 o.o4 0.02 0.01mm
E 1

max
1.32 0.66 0.33 0.13 0.06 0.03 0.01

20

V 39^3 78.5 157 393 785 1570 3930
E' . 1.62 0.81 0.4l 0.16 0.08 0.04 0.02mm
max

2.65 1.32 0.66 0.26 0.13 0.06 0.02



X = 1 (ym)

d = 0^5 ( cm)

b D= .005 .01 .02 .05 .1 .2 .5

( cm) ( cm)

v 7.85 15-7 31.1* 78.5 157 314 785

(Jg)E' . 8.11 4.05 2.03 0.82 0.42 0.24
_ min

(%)E' ^0* 6.37 3.10 1.19 0.59 0.32
max

v 3.93 7.85 15.7 39.3 78,5 157 393
10 E' .

- 8.11 4.06 1.64 0.84 0.48
_ mm
E' - <20* 6.19 2,37 1.17 0.64
max

v 1.96 3.93 7.85 19.6 39.3 78.5 196
20 E 1

.
- 8.12 3.28 I.69 0.96

_ mm
E 1 - <20* 4.74 2.34 1.27
max

d = 1 (cm)

b
(cm)

v 15.7 31.4 62.8 157 314 628 1570

5 WE 1

. 4.05 2.03 1.01 0.41 0.20 0.11 0.05
_ mm

(^)E' 6.55 3.24 1.59 0.6l 0.30 0.15 0.07
max

v 7.85 15.7 31.4 78.5 157 314 785
10 E' „ 8.11 4.05 2.03 0.81 0.41 0.21 0.11

_ mm.
E' <20* 6.48 3.18 1.23 0.59 0.29 0.14
max

v 3.93 7.85 15-7 39.3 78.5 157 393
20 E' . 8.11 4.05 1.63 0.82 0.42 0.22

_ mm
E» - <20* 6.37 2.45 1.19 0.59 0.28
max

'(Note: These values are upper bounds.)



X = 1 (ym)

d = 2 (cm)

b
(cm)

D =

(cm)

.005 01 .02 .05

10

20

v

mm
max

v
E 1

I'

min

max

v
E'mm
max

31.4
2.03

3.30

15.7
4.05

6.59

7.85
8.11

<20*

62.8 126
1.01 0.51

1.64 o.8l

31.

4

52.8
2.03 1.01

3.28

15.7
4.05

6.55

1.62

31. 4

2.03

3.24

314

0.20

0.32

157
0.41

0.63

78.5
o.8i

1.26

628
0.10

0.15

314

0.20

0.31

157
0.41

o.6i

1260
0.05

0.07

628
0.10

0.15

314

0.20

0.30

3140

0.02

0.03

1570
0.04

0.06

785
0.09

0.12

b
(cm)

d = 5 (cm)

v

mm
max

78.5
0.81

1.32

157
o.4i

0.66

314
0.20

0.33

785
0.08

0.13

1570
0.04

0.06

3140
0.02

0.03

7850
0.01

0.01

10

V 39.3 78.5 157 393 785 1570 3930
E» . 1.62 0.81 0.41 0.l6 0.08 0.04 0.02mm
max

2.65 1.32 0.66 O.26 0.13 0.06 0.02

20
V 19.6 39-3 78.5 196 393 785 I960
E' . 3.24 1.62 0.81 0.32 0.16 0.08 0.03mm
max 5.29 2.64 1.31 0.5; '.25 0.12 0.05

*(Note: These values are upper bounds.)



A_ = 2 (ym)

d = 0.5 (cm)

b D = .005 .01 .02 • 05 .1 .2

(cm) (cm)

V 3.93 7. 85 15.

T

39.3 78.5 157
5 (*)E« .mm

- 8.11 4.06 1.64 0.8U 0.48

U)E»
max

- <20* 6.19 2.37 1.17 0.64

V 1.96 3.93 T.85 19.6 39.3 78.5
10 E' .mm

- - a. 12 3.28 1.69 O.96

E'
max

— — ^0* 4.74 2.34 1.27

V 0.982 1.96 3.93 9.82 19.6 39-3
20 E' .mm

- - - 6.55 3.38 1.93

E'
max

d = 1 (cm)

<l8* 4.68 2.55

b
(cm)

'(Note: These values are upper bounds.)

393

196

98.2

v 7.85 15.7 31.4 78.5 157 314 785
(#)E f

• 8.11 4.05 2.03 0.81 0.41 0.21 0.11
_ mm

(%)E* <20* 6.48 3.18 1.23 0.59 0.29 0.14
max

v 3.93 7.85 15.7 39-3 78.5 157 393
10 E» . 8.11 4.05 1.63 0.82 0.42 0.22

_ mm
E f - <20* 6.37 2.45 1.19 0.59 0.28
max

v 1.96 3.93 7.85 19.6 39-3 78.5 196
20 E' . - 8.11 3.25 1.64 0.84 0-.U3

_ mm
E* - <20* 4.90 2.37 1.17 0.56
max

10



A_ = 2 (urn)

d = 2 (cm)

b
(cm)

D =

(cm)

005 .01 02 05

(*)E«mm
max

15.7
4.05

6.59

31. 4

2.03

3.28

62.8
1.01

1.62

157
0.41

0.63

314

0.20

0.31

628
0.10

0.15

1570
o.o4

0.06

10

V 7.85 15-7 31.4 78-5 157 314 785

E' . 8.11 4.05 2.03 0.81 0.4l 0.20 0.09mm
max

<20' 6.5* 3.24 1.26 0.61 0.30 0.12

20

v
E'mm
max

3.93 7.85
8.11

<20*

15-7
4.05

6.48

39-3
1.62

2.53

78.5
0.81

1.23

157
0.4l

0.59

393
0.17

0.24

b
(cm)

d = 5 ( cm)

(Jt)E'
min

39.3
1.62

(^)E' 2.65
max

78.5
0.81

1.32

157
0.4l

0.66

393
0.16

0.26

785
0.08

0.13

1570
o.o4

0.06

3930
0.02

0.02

10
v
E'

"tti

mm
max

19.6
3.24

5.29

39.3
1.62

2.64

78.5
0.81

1.31

196
0.32

0.52

393
0.16

0.25

785
0.08

0.12

I960
0.03

0.05

20

v
E"mm
max

9.82
6.48

<18*

19.6
3.24

5.28

39.3
1.62

2.63

98.2
O.65

1.04

196
0.32

0.51

393 982
0.16 0.07

0.25 0.09

(NoU These values are upper bounds

11



A = 5 (ym)

d = 0.5 (cm)

b D= .005 -01 .02 .05 .1 .2 .5

(cm) (cm)

v 1.57 3.14 6.28 15.7 31.1+ 62.8 i.vi

5 (^)E' .

_ mm
(^)E'

max

v 0.785 1-57 3.11+ 7.85 15.7 31.1+ 78.5
10 E 1

.

min
E 1

max

v
20 E'

6.28
10.1

15.7
1+.09

31.1+

2.11
62.8
1.21

<23* 5.93 2.93 1.59

3.14 7.85
8.19

15.7
1+.22

31.1+

2.1+1

- <20* 5.85 3.19

1.57 3.93 7.85
8.1+1+

15.7
1+.82

0.393 0.785 1-57 3.93 7.85 15.7 39-3

mm
E' - ^0* 6.37
max

d = 1 (cm)

b
(cm)

v 3.11+

5 (^)E' .

_ mm
(#)E'

max

v 1.57
10 E' .mm

E»
max

v 0.785
20 E' .mm

6.28 12.6 31.1+ 62.8 126 314
10.1 5.07 2.03 1.02 0.53 0.27

<23* 7.96 3.06 1.1+8 0.73 0.35

3.14 6.28 15.7 31.1+ 62.8 157
- 10.1 4. Ob 2.0b 1.06 0.54

- <23* 6.13 2.96 1.46 0.70

1.57 3.14 7.85 15.7 31.1+ 78.5
- - 8.13 1+.09 2.11 1.08

E' - ^0* 5.93 2.93 1.39
max

*(Note: These values are upper bounds.)
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1=5. (ym)

d = 2 (cm)

b
(cmj

10

20

D =

(cmj

mm
max

v
E'
min

E'
max

v
E'
min

.005

6.28
10.1

<23*

3.14

1.57

.01

12.6

5.07

8.19

6.28
10.1

^3*

3.14

max

.02

25.1
2.53

4.05

12.6

5.07

8.11

6.28
10.1

^3*

• 05

62.8
1.01

1.58

31. 4

2.03

3.16

15.7
4.06

6.32

.1

126

0.51

0.77

b2.8
1.02

1.53

.2

251
0.26

0.37

126
0.51

0.74

.5

628
0.11

0.15

314
0.22

0.30

31.4 62.8 157
2.03 1.02 0.1+3

3.06 1.48 0.59

b
(cm)

d = 5 (cm)

10

20

v

(#)i
min

max

v
E'

E'

mm
max

v
E 1

E'

mm

15-7
4.05

6.61

7.85
8.11

<20*

3.93

max

31. 4

2.03

3.30

15-7
4.05

6.60

7.85
8.11

<20*

62.8
1.01

1.64

31. 4

2.03

3.26

15-7
4.05

6.57

157
0.41

0.65

78.5
0.8i

1.30

39.3
1.62

2.59

314
0.20

0.32

157
0.4l

0.64

78.5
0.8l

1.27

626
0.10

0.15

314
0.20

0.31

157
0.4l

0.62

1570
0.04

0.06

785
0.08

0.12

393
0.16

0.24

•(Note : These values are upper bounds.)
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b D = .005

(cm) (cm)

V 0.785

5 (*)E» .mm
-

(^)E'
max

-

V 0.393
10 E' .mm

-

E f

max
—

V 0.196
20 E' .mm

-

E'
max

-

b
(cm)

_X = 10 (urn)

d = 0.5 ( cm)

.01 .02 .05 .1 .2 .5

1.57 3.14 7.85 15.7 31. 4 78.5
8.19 4.22 2.41

<20* 5.85 3.19

0.785 1.57 3.93 7.85 15.7 39.3
8.44 4.82

- - - <20* 6.37

0.393 0.785 1.96 3.93 7.85 19.6
9.65 -

_ <20*

d = 1 (cm)

v 1.57 3.14

5 (%)%' ._ mm
(^)E'

max

v 0.785 1-57
10 E* .

_ mm
E' -
max

v 0.393 0.785
20 E' .mm

E ! - - ^0* 5.85 2.78
max

6.28
10.1

15.7
4.06

31.4
2.05

62.8
1.06

157
0.54

<23* 6.13 2.96 1.46 0.70

3.14 7.85
8.13

15-7
4.09

31.4
2.11

78.5
1.08

- <20* 5.93 2.93 1.39

1.57 3.93 7.85
8.19

15.7
4.22

39-3
2.16

'(Note: These values are upper bounds.)
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A = 10 (ym)

d =
2_ (cm)

b _D = .005 .01 .02 .05 .1 .2 .5

(cm) (cm)

V 3.14 6.28 12.6 31. 4 62.8 126 311+

5 (^)E' .mm
- 10.1 5.07 2.03 1.02 0.51 0.22

max
— <23* 8.11 3.16 1.53 0.74 0.30

V 1.57 3.14 6.28 15.7 31. 4 62.8 157
10 E 1

.

min
- - 10.1 4.06 2.03 1.02 0.1+3

E'
max

— — ^3* 6.32 3.06 1.1+8 0.59

V 0.785 1.57 3. 11+ 7.85 15.7 31.1+ 78.5
20 E» .mm

- - - 8.11 4.06 2.05 0.86

E' - - - <20* 6.13 2.96 1.18
max

b
(cm)

d. =
_5 ( cm)

v

mm
max

7.85
8.11

<20*

15.7
1+.05

6.60

31.1+

2.03

3.28

76.5
0.01

1.30

157
0.41

0.64

314 785
0.21 0.08

0.31 0.12

10

v
E'
min

max

3.93 7.85
8.11

<20*

15.7
1+.05

6.57

39-3
1.62

2.59

78.5
0.81

1.27

157
0.1+1

0.62

393
0.16

0.24

20

v
E'

I'

mm
1.96 3.93

max

7.85
8.11

<20*

19.6
3.21+

5.19

39-3
1.62

2.55

76.5
0.81

1.24

196
0.33

0.1+7

*(Note : These values are upper bounds.)
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A = 20 (urn)

d = 0.5 (cm)

b _D = .005 .01 .02 .05 .1 .2 .5

(cm) (cm)

V 0.393 0.785 1.57 3.93 7.85 15.7 39.3

5 (#)E» .mm
- - - - 8.44 4.82 -

(*)E«
max

— — ~" — <20* 6.37 —

V 0.196 0.393 0.785 1.96 3.93 7.85 19.6
10 E» .mm

- - - - - 9.65 -

E 1

max
— — - - - <20* —

V o.09» 0.196 0.393 O.982 1.96 3.93 9.82
20 E !

.

_ min
— — — — — — —

E'
max

-

d = 1 (cm)

b

(cm)

V 0.785

5 (*)E» .mm -

(*)E«
max

—

V 0.393
10 E' .mm

-

E*
max

—

V 0.196
20 E' .mm

-

E'
max

-

1.57 3.14

0.785 1.57

0.393 O.785 1.96

7.85
8.13

15.7
4.09

31.4
2.11

78.5
1.08

<20* 5.93 2.93 1.39

3-93 7.85
8.19

15.7
4.22

39.3
2.16

- <20* 5.85 2.78

1.96 3.93 7.85
8.44

19.6
4.32

*(Note : These values are upper bounds.)

<20* 5.56
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X = 20 (ym)

d =
2_ (cm)

D= .005 .01 .02 .05 .1 .2 .5

3-14

(cm) (cm)

V 1.57

5 WE' .

_ min
-

(jOe 1

max
-

V 0.785
10 E' .

min
-

E 1

max
—

V 0.393
20 E' .mm

-

E'
max

-

1.57

0.785

6.28
10.1

15-7
1+.06

31. 4

2.03
62.8
1.02

157
0.43

<23* 6.32 3.06 1.1*8 0.59

3.14 7.85
8.11

15-7
4. 06

31 .4

2.05
78.5
0.86

- <20* 6.13 2.96 1.18

1.57 3.93 7.85
8.13

15-7
4.09

39-3
1.73

^0* 5.93 2.36

d = 5 (cm)

b
(cm)

V 3.93 7.85 15.7 39-3 78.5 157 393

5 WE' .mm
- 8.11 4.05 1.62 0.81 0.41 0.16

We' max
- ^0* 6.57 2.59 1.27 0.62 0.24

V 1.96 3.93 7.85 19.6 39.3 78.5 196
10 E* .mm

- - 8.11 3.24 1.62 0.81 0.33

E'
max

— — <20* 5.19 2.55 1.24 0.47

V 0.982 1.96 3.93 9.82 19.6 39-3 98.2
20 E' .mm - - - 6.49 3.24 1.62 0.66

E' — - - <18* 5.09 2.48 0.95
max

*(Kote : These values are upper bounds.)
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X = 50 (ym)

d = 0__5 (cm)

b _D = .005 -01 .02 .05 .1 .2 .5

( cm) ( cm)

v 0.157 0.314 0.628 1.57 3.14 6.28 15.7
5 (XJE'^ ----- la.i -

^ )E
*max "

- - - - <*• -

v 0.079 0.157 0.314 0.785 1.57 3. 14 7.85
10 E' .

- - - - ___
_ mm
max

20 E f

.mm
v 0.039 0.079 0.157 0.393 O.785 1.57 3.93

E 1

max

d = 1 (cm)

b
(cm)

V 0.314

5 (%)E' .mm
-

max
—

V 0.157
10 E» .mm -

E*
max

—

V 0.079
20 E' .mm

-

E'
max

-

0.628 1.26 3.14

0.314 0.628 1.57

6.28
10.2

12.6
5.28

31.4

2.70

<2 3* 7-32 3.48

3.14 6.28
10.6

15.7
5.40

<23* 6.95

0.157 0.314 0.785 1.57 3.14 7.85
10.8_____ <20*

*(Note : These values are upper bounds.)
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b_ D = .005

(cm) (cm)

V 0.628

5 (*)E» .mm
-

t$)E"
max

-

V 0.314
10 E' .mm

-

E'
max

—

V 0.157
20 E' .

mxn
-

E'
max

-

b
(cm)

V 1.57

5 mm
max

-

V 0.785
10 E* .mm

-

E 1

max
—

V 0.393
20 E' .mm

E'
max

—

X = 50 (ym)

d = 2 (cm)

.01 .02 .05 .1 .2 .5

1.26 2.51

0.628 1.26

0.31 4 0.628

d = 5 (cm)

3.l4

1.57

0.785

*(Note : These values are upper "bounds.)

6.28 12.6 25.1 62.8
10.1 5.08 2.56 1.08

<£3* 7.66 3.70 1.1+8

3.14 6.28 12.6 31.4
- 10.2 5.12 2.16

- <23* 7.41 2.96

1.57 3.1^ 6.28 15.7
- - 10.2 4.32

^3* 5.91

6.28
10.1

15.7
4.05

31.4
2.03

62.8
1.01

157
0.41

<23* 6.48 3.18 1.55 0.59

3.14 7.85
8.11

15.7
4.05

31.4
2.03

78.5
0.82

- ^0* 6.37 3.10 1.19

1.57 3.93 7.85
8.11

15.7
4.06

39-3
1.64

^0* 6.19 2.37
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X = 100_ (ym).

d = O^ (cm)

b D = .005 .01 .02 .05 .1 .2 .5

(cm) (cm)

v 0.079 0.157 0.31U O.785 1.57 3.1^ 7.85

5 (*)E* .mm
(*)E«

max

V
10 E' .mm

0.039 0.079 0.157 0.393 0.785 1.57 3.93

nin

max

v 0.020 0.039 0.079 0.196 0.393 O.785 1-96
20 E' .

- - - ___
_ mm
max

d = 1 (cm)

b
(cm)

v 0.157 0.31U 0.628 1.57 3.1U 6.28 15.7

5 (Jf)E' . - - 10.6 5.^0
_ mm

- <23* 6.95

0.079 0.157 0.314 0.785 1-57 3.1^ 7.85----- 10.8_____ <20*

0.039 0.079 0.157 0.393 0.785 1.57 3.93

nin

max

max

V
10 E 1

.

min
E 1

max

V
20 E 1

.mm

*(Note : These values are upper bounds.)
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X = 100 (ym)

d =
2_ (cm)

b _D = .005 .01 .02 .05 .1 .2 .5

(cm) (cm)

V 0.31U 0.628 1.26 3.14 6.28 12.6 31.4

5 min
- - - - 10.2 5.12 2.16

max
— — — — <23* <i6* 2.96

V 0.157 0.314 0.628 1.57 3.14 6.28 15.7
10 E' .mm

- - - - - 10.2 4.32

E»
max

— — — — — <23* 5.91

V 0.079 0.157 0.314 0.785 1.57 3.14 7.85
20 E' .

min
E'

— — - - - - 8.65

<?0*
max

a = 5 ( cm J

(cm)

V 0.785

5 (*)E« .mm
-

U)E' max
—

V 0.393
10 E' .mm

-

E'
max

—

V O.196
20 E' .mm

-

E 1

max
-

1.57 3.14

0.785 1.57

0.393 O.785

7.85
8.11

15.7
4.05

31.4

2.03
78.5
0.82

<£0* 6.37 3.10 1.19

3.93 7.85
8.11

15.7
4.06

39-3
1.64

- <20* 6.19 2.37

1.96 3.93 7.85
8.12

19.6
3.28

'(Note: These values are upper bounds.)

<20* 4.74
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E' . , E' A, b, D~ z (or d~ z
) ;

min max —

3. Scaling the Diffraction Loss Tables

The range of the diffraction loss tables can be extended by using

scaling relationships (provided that the errors in the formulas used to

compute the diffraction losses do not become excessive in the extended
range) . It is clear from the formulas in section 6 for the quantities
E' . and E'

r
given in the tables, that the scaling relationships are

simple only if the ratio of the aperture diameter to the source diameter,

Dd
-
*, is constant . Subject to this condition, the scaling relationships

are as follows

:

Quantity Scales as (constant Dd"" 1
)

r 2
)

Upper Bounds X *5
, lb

*5
, D

_1
(or d" 1

).

(The upper bounds are the quantity denoted E(v,v,0) in sec. 5.)

4. Effective Wavelengths to Use in
the Diffraction Loss Tables

The effective wavelength, A
-

, for computing the diffraction loss for
a given experimental geometry with a source of spectral radiance distri-
bution S% (A) , is defined to be that wavelength which yields the average
spectral diffraction loss when substituted into the approximate Kirchhoff
scalar paraxial model (see sec. 1). Furthermore, if the approximate
formula for the effective diffraction loss for a circular detector, eq
(12) of section 6, is valid (see sec. 7 for a discussion of the mathemat-
ical errors in the formulas used in this report) , then the diffraction
loss scales proportionally to the wavelength, and an explicit equation
for A" can be derived in the form,

f^XdXS, (A)
, _ A 1 A

fX
>l
dXs

x
m '

where Al and A2 are the short- and longwavelength limits to S^ (A)

.

A

If S^ (A) is the Planck blackbody spectral radiance function [2] ,

denoted L (A,T) at temperature T, then A can be related to the tempera-
ture by approximate equation (derived by Blevin[i]),

A
-

= 5324/T (micrometers), (1)

if T is in degrees Kelvin. Thus A
-

is about 1.84A , the wavelength of
max

maximum spectral radiance for a blackbody at temperature T.

loss for a source of spectral radiance distribution S (A) , is given by
A

The effective wavelength, A
-

, for computing the luminous diffraction
for a soi

he equation,
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/^XdXV(A)S (A)

/^dAV(A)S
x
(A)'

where V(A) is the spectral luminous efficiency function for photopic
vision and Al and A2 are the limits of the visible spectrum [3] . If

S
y
(A) is the Planck blackbody spectral radiance function, then Blevin

[I] has shown that A
-

is 0.572 micrometers for a blackbody temperature
of 2856 K (CIE Illuminant A)

.

5. Sample Diffraction Loss Calculations

5.1. Sample Diffraction Loss Calculations for a Simple Case

A simple example is the following: Compute the average
diffraction loss over the face of a circular detector which views a 500 K
blackbody through a small aperture. The geometry is that of a source
radiance measurement (see fig. 1) . The diameter of the blackbody
aperture (d) is 1 cm; the distance from the blackbody aperture to the

diffracting aperture (b_) is 5 cm; the diameter of the diffracting
aperture (D) is 0.1 cm; the distance from the diffracting aperture to the

detector (a_) is 60 cm; the detector diameter (2x ) is 5 cm. Since the
blackbody temperature is 500 K, eq (1) shows that the effective diffrac-
tion wavelength \~ is 10.6 micrometers. Referring to the diffraction
loss tables (sec. 2) , it is seen that the tabulated wavelength closest to
10.6 micrometers is 10; at this wavelength, and at d = 1 cm, b_ = 5 cm,

D = 0.1 cm, the on-axis diffraction loss E". (for a_ at least 10b_, a con-
dition which is met by this example) is found to be 2.05%; the corres-
ponding area-average diffraction loss over the face of a detector of
radius x , E' , is found to be 2.96%. From the formula for X ,

max max max

x = 0.5[(0.9d-D)ab- 1 - D] , (2)max —
it is found that x is 4.8 cm; the detector radius is given above as

2.5 cm. Denoting tne desired average diffraction loss over the face of
the detector by the symbol E', it is reasonable to interpolate between
E 1

. and E 1 by the following area-weighting formula:mm max

E' = E' . +[E' - E' . ] (x /x )
2

. (3)
mxn max mm o max

Thus E' is found to be 2.30% at the wavelength of 10 micrometers; the
scaling table in section 3 shows that both E'. and E 1 scale proportion-
ally to the wavelength, so the desired value of E' at a wavelength of
10.6 micrometers is therefore obtained by multiplying 2.30% by the ratio
10.6/10 = 1.06 to get 2.44 %.

5.2. Sample Diffraction Loss Calculations for a Complex Case

Figure 2 shows the essential geometry of a circularly symmetric
source-radiometer system currently in use at NBS. The source S is a
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blackbody whose temperature is roughly 300 K; the source aperture SA
limits the radiating area; the radiometer aperture RA defines the solid
angle in which radiation is received from SA; the radiometer cavity RC
collects the radiation transmitted through RA. It is desired to calcu-
late the diffraction loss for radiation from S transmitted through SA
and RA to RC.

This is really a 2-step diffraction problem; the total diffraction
loss DL is obtained from both:

a. , the diffraction loss for radiation from S transmitted through
SA to RA, denoted DL , and;

a

b. , the diffraction loss for radiation from SA transmitted through
RA to RC, denoted DL .

Thus the total diffraction loss, denoted DL, is

DL = DL + DL - DL DL ,
a. d a b

since the diffraction loss at the detector is given as a percentage of
the irradiance that would be present in the absence of diffraction.

The effective diffraction wavelength X~ for this problem is found
from the given temperature of 300 K and eq (1) of section 4 to be 17.7
micrometers. It is clear that the quantity of interest in computing DL
is the effective radiance of SA, compared with the radiance of S. On
the other hand, the quantity of interest in computing DL is the fraction
of the total radiation from SA, transmitted through RA, which is collec-
ted by RC. Therefore, in computing DL it is necessary to treat RC as

the source and SA as the detector, since (as explained in sec. 1) the
diffraction loss formulas and the tables in this report all refer to the
source radiance measurement geometry, and not to the total aperture
radiation measurement geometry.

Referring to figure 2, and using the terminology of the tables, it
is seen that the essential parameters for computing DL and DL are:

DL : X~ = 17.7 micrometers, d = 0.2 cm, b = 0.35 cm, D = 0.05 cm,
a —

a_ =17.1 cm, x = 0.575 (source radiance measurement, see
fig. 3); °

DL : X" = 17.7 micrometers, d = 2.0 cm, b = 8.0 cm, D = 1.15 cm,

a_ =17.1 cm, x = 0.025 cm (total aperture radiation measure-
ment, see fig. 3)

.

To compute DL , note that d = 0.2 cm is smaller than 0.5 cm, the
smallest tabulated value for d; therefore it is necessary to multiply d

and D (to keep the ratio Dd-1 constant) by a scaling factor 3 to use the

tables. Let d' = 3d be the scaled d and D' = 3D be the scaled D; if
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3 = 10, then d' = 2.0 cm and D' = 0.5 cm, which are tabulated values.

Furthermore, b_ = 0.35 cm is much smaller than 5.0 cm, the smallest
tabulated value for b; therefore it is necessary to multiply b by a

scaling factor a to use the tables. Let b' = ab be the scaled b_; if

a = 14.3, then b_' = 5.0 cm, a tabulated value.

In addition, the effective wavelength X~ = 17.7 micrometers is not
a tabulated wavelength. Therefore X~ is multiplied by a scaling factor
6 to use the tables. Let X~ ' = BX~ be the scaled A

-
; if = 1.13, then

A
-

' = 20 micrometers, a tabulated value.

Next compute x from eq (2) of section 5.1 to get x =3.15 cm,
4-v, 4- / rWS max

so that x /x = 0.IH.
o max

Referring to the diffraction loss tables for the values of E ' . and
E' for the scaled parameters, X~ ' = 20 micrometers, d' = 2.0 cm, '

D* = 0.5 cm, b_' = 5.0 cm (note that the condition that a. be at least 10b_

is met for the geometry of DL ) , it is found that E' . = 0.43% and
E 1 = 0.59% for the scaled parameters. To interpolate between E 1

. and
E4 to obtain the desired average diffraction loss E' over the radiom-
eter aperture RA, for the scaled parameters, refer to eq (3) of section
5.1 and substitute the preceding values of E'. , E' , and x /x into
eq (3). The resulting value of E' = 0.435% for the scaled parameters is

essentially equal to E ' . .mm
The scaling process must now be reversed to obtain DL , the diffrac-

tion loss for the original unsealed parameters. Referring to the scaling
table in section 3, it is seen that

DL = E 1 (scaled)

B

2a" 1 6- 1
,

or DL = 6. 19E' (scaled) = 2.69%. This value is very close to that cal-
culated for DL from the more accurate formula, eq (12) of section 6,

2.70%.
a

Unfortunately DL cannot be obtained from the tables in their
present form. The values of E'. and E' in the tables are computed by

min , . max . f ,assuming that the detector-aperture distance a_ is much greater than the
source-aperture distance b. This clearly does not hold for the geometry
of DL (see fig. 2), since a_ = 17.1 cm (as explained above, since this
is a total aperture radiation measurement, the source is treated as the
detector and vice versa) and b_ = 8.0 cm, and therefore a_ = 2.14b and the
condition for the validity of the tables that a_ be at least 10b is not
met.

In addition, since Dd-1 = 0.575 for the geometry of DL , the values
of d and D cannot be scaled to fit the tables because Dd" 1 = 0.5 is the
largest value tabulated, and Dd-1 must be held constant in scaling.

In a situation of this kind, it is necessary to return to the
general formula given in section 6, eq (12) , for the average diffraction
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loss over the detector disc. This formula is not subject to the restric-
tion of the tables, that the aperture-detector distance a be at least 10

times the source-aperture distance b_. In eq_(12) the average diffrac-
tion loss over the detector disc is denoted E(u,v,w ), where u, v, and
w are dimension less functions of the geometry and wavelength given by
eqs (5), (6), and (8), respectively. Substituting the values given above
for DL into eqs (5) , (6) , and (8) , u, v, and w are computed and then
substituted into eq (12) for E(u,v,w ) to get d£ = 0.87%.

Finally, therefore, the total diffraction loss, DL, from the source
S to the radiometer cavity RC, is found to be DL = 3.55% .

6. Formulas Used for Computing the Diffraction Loss Tables

The formulas used in computing the diffraction loss tables are
derived from the basic Fresnel-Kirchhoff diffraction formula as given,
for example, in Born and Wolf [4].

For a source radiance measurement (as shown in fig. 3) , the diffrac-
tion losses increase with increasing detector radius x . It is felt
that a reasonable upper bound for the detector radius, for a source radi-
ance measurement, is defined by the condition that the detector field of
view not extend beyond the inner portion of the source disc whose radius
is 0.9 of the source radius. If this upper bound is denoted x , it is

ITlcLX
seen from figure 3 that x is given by eq (2) of section 5.1. The

max
minimum source diameter, for a source radiance measurement, is that which
makes x = 0; thus the minimum source diameter is [D(l + ba-1 )/0.9].

max —
For a total aperture radiation measurement, the diffraction losses

decrease with increasing detector radius. It is felt that a reasonable
lower bound for the detector radius, for a total aperture radiation
measurement, is defined by the condition that all the source radiation
which passes through the aperture - except for diffraction losses - be
incident upon that portion of the detector disc whose radius is 0.9 of
the detector radius. If this lower bound is denoted x . , it is seen
from figure 3 that

x .
= 0.5[(d+D) (0.9)

_1 ab_1 + D]

.

nan —
Following the analysis of Blevin[l], it is found that the on-axis

diffraction loss at the center of the detector, denoted E(u,v,0), for
the source radiance geometry, is approximately

E(u,v,0) = ^[(v-u) -1
+ (v+u) -1

], (4)

where u and v are the dimensionless quantities,

u = ^(a- 1 + b" 1
) (2X)" 1

, (5)

v = uDd(2bX) -1
. (6)
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If the aperture-detector distance a_ is much greater than the source-

aperture distance b, then u is approximately

u .
= TrD

2 (2bA)
_1 = vDd" 1

; (7)mm —

note that u . is independent of a.
min —

Now let E(u,v,w ) denote the diffraction loss at the off-axis point
in the detector plane whose radius is x (see fig. 3) , and define a third

dimensionless quantity,

w = ttDx (aA)
-1

. (8)
o o —

Blevin [1] has shown that E(u,v,w ) is approximately

E(u,v,w ) = 7T"
2/^d6[(-u + w cosG + (v2-w 2sin 2 e)°-5 )

_1 + (u + w cos0 +
o o o o

(v2-w2sin2 6)
'5 )- 1

] , (9)
o

and that E(u,v,w ) increases steadily from the minimum value E(u,v,0) as

the radius of the off-axis detection point increases from x = (on axis)

out to the radius of the rim of the detector (which is also labeled x in
fig. 3)

.

°

Referring to eq (4) for E(u,v,0), it is seen that if the aperture-
detector distance a_ is much greater than the source-aperture distance b_,

then E(u,v,0) is approximately E (u . ,v,0) , denoted E'. , and
min mm

E'. = 2(ttv)~ 1
(1 - D2 d- 2

)

-1
. (10)mm

Note that E ' . is independent of _a and that it is the minimum value of
E(u,v,0), considered as a function of a_, since E(u,v,0) decreases stead-
ily to E'. as a increases (assuming the other parameters are held

,
mm —

constant; .

Referring to eq (9) for E(u,v,w ), it is seen that the average
diffraction loss over the surface of a detector of radius x , denoted
E(u,v,w ), is given by the formula,

E(u,v,w ) = w-2 ./" °2wdwE(u,v,w) . (11)
o o

Since the off-axis diffraction loss E(u,v,w ) increases steadily as

the detection point moves away from the axis, it is clear that the
average diffraction loss over the disc of radius x also increases
steadily as x increases. Thus E(u,v,w ) attains its maximum value,

o o
considered as a function of x , for a detector radius of x

o max

If the detector plane is now moved towards the aperture, holding the
source diameter d, the source-aperture distance b_, and the aperture
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diameter D constant, then a point will be reached for which x =0.
The value of a at this point is denoted a . (see fig. 3) , and it is— —min
seen that

a .
= bD(0.9d - D)

-1
.

—min —

It can be shown that the maximum value of E(u,v,w ) , the average
diffraction loss over the detector disc of radius x , considered as a

function of the aperture-detector distance a, occurs at a . ; it can also—mm

w + u = 0.9v,
max

be shown that

where w is defined as
max

w = ttDx (aX)
_1

.

max max —

Note that the preceding analysis assumes that the detector radius is

x , and that the radius varies with x as the detector is moved
max , . . . max
towards the aperture.

Now consider the behavior of the average diffraction loss over the
disc of radius x as the detector plane is moved away from the

aperture. It is clear that u will approach its minimum value u .

asymptotically in this case, and that consequently w will correspond-
ingly approach its maximum value, considered as a function of a_, which
is v(0.9 - Dd

-1
) . It can be shown that the average diffraction loss over

the disc of radius x , E(u,v,w ), attains its minimum value, con-
sidered as a function of a, when a_ is much larger than b_ (and hence u is

approximately equal to u . and w is approximately equal to v(0.9 -

Dd-1 )). This minimum value of E(u,v,w ) is denoted E 1 and is inde-
max max

pendent of a_.

Steel, De, and Bell [5] have derived a very useful and compact
approximate formula for E(u,v,w ),

o

[(v+w )
2 - u 2

]

E(u,v,w ) = (27TW )

-1 ln . (12)

[ (v-w )
z - uz ]

o

Thus E' can be expressed approximately by the formula,

(1.9-2Dd_1 )

E' = [2Trv(0.9-Dd_1 )]- 1 ln [19 ]. (13)
max ,„ , „ __ i

.

(0.1+2Dd l
)
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7. Estimated Accuracy of the
Diffraction Loss Tables

Steel, De, and Bell [5] show that an upper bound for the fractional
error in E ' . , as computed from eq (10) of section 6, is (2v)

-1
; thus

E' . is not given in the tables for values of v less than 5, in order to

limit the estimated error in the tabulated values to less than 10% (of

the value)

.

Similarly, Steel, De, and Bell [5] show that an upper bound for the

fractional error in E" , as computed from eq (13) of section 6, is

0.06 + 1.6v" ,• thus E is not given in the tables for values of v less

than 12, in order to limit the estimated error in the tabulated values to

less than 20% (of the value). However, an upper bound for E'_ is given
for values of v between 6 and 12; this upper bound is the diffraction
loss for the point on the axis at which the rim of the aperture appears
to coincide with the rim of the source; in other words, the field of view
through the aperture from "this point coincides with the source disc (in

fig. 3, this point is the distance a from the aperture) . Blevin [1]

shows that the diffraction loss for this point, denoted E(v,v,0), is given
by the approximate formula,

E(v,v,0) = (ttv)
-0,5

.

Note that the ratio [E ' /E' . ] depends on Dd-1 only, and varies
. , - , , max mm

approximately as follows

:

Dd~ l E ' /E '

.

— max min

0.0 1.64

0.1 1.45

0.2 1.39

0.3 1.35

0.4 1.32

0.5 1.29.

Thus E'
^

and E'. bracket the diffraction loss, for detector radii
between zero and x , to within ±20% roughly for the worst case,
Dd - 0, and more accurately for larger values of Dd-1 .

Furthermore, if the Kirchhoff scalar paraxial model does not
accurately represent the physical behavior of the experimental situation,
then the diffraction loss values in the tables will contain an additional
error besides those due to the mathematical approximations used to compute
the tables.

A good criterion for the validity of the Kirchhoff model, as Stratton
[6] points out, is that the diameter of the diffracting aperture must be
much larger than the wavelength. In the terminology of figure 3, if
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D/X > 10,

then the Kirchhoff model is held to be valid; if this condition does not
hold, then the exact vector model may be required.
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Figure 1. Diffraction geometry used in the diffraction loss tables
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Figure 2. Diffraction geometry for the sample diffraction loss calcula-
tions; complex case: A-A, optical axis; RA, radiometer aper-

ture; RC, radiometer cavity; S, 300 K blackbody source; SA,

defining aperture for S (distances in cms; aperture diameters
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Figure 3. Diffraction geometry used in the general diffraction loss
formulas: A, aperture; B, detector; C, source; d, source
diameter; D, aperture diameter; x , detector radius; X-^ ,

maximum detector radius for a source radiance measurement;
xmin/ minimum detector radius for a total aperture radiation
measurement; a_, aperture-detector distance; ajain > minimum
aperture-detector distance; a^, aperture-detector distance for

computing an upper bound for the diffraction loss; b, source-
aperture distance.
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